Convergence of the Newton-Type Method for Generalized Equations
نویسندگان
چکیده
منابع مشابه
Convergence of inexact Newton methods for generalized equations
For solving the generalized equation f (x) + F(x) 0, where f is a smooth function and F is a set-valued mapping acting between Banach spaces, we study the inexact Newton method described by ( f (xk)+ D f (xk)(xk+1 − xk)+ F(xk+1)) ∩ Rk(xk, xk+1) = ∅, where D f is the derivative of f and the sequence of mappings Rk represents the inexactness. We show how regularity properties of the mappings f + ...
متن کاملNew and Generalized Convergence Conditions for the Newton-kantorovich Method
We present new semilocal convergence theorems for Newton methods in a Banach space. Using earlier general conditions we find more precise error estimates on the distances involved using the majorant principle. Moreover we provide a better information on the location of the solution. In the special case of Newton’s method under Lipschitz conditions we show that the famous Newton–Kantorovich hypo...
متن کاملAn improved generalized Newton method for absolute value equations
In this paper, we suggest and analyze an improved generalized Newton method for solving the NP-hard absolute value equations [Formula: see text] when the singular values of A exceed 1. We show that the global and local quadratic convergence of the proposed method. Numerical experiments show the efficiency of the method and the high accuracy of calculation.
متن کاملA Modified Newton-Type Method with Sixth-Order Convergence for Solving Nonlinear Equations
In this paper, we present and analyze a sixth-order convergent method for solving nonlinear equations. The method is free from second derivatives and permits f'(x)=0 in some points. It requires three evaluations of the given function and two evaluations of its derivative in each step. Some numerical examples illustrate that the presented method is more efficient and performs better than classic...
متن کاملOn a Newton-Type Method for Differential-Algebraic Equations
This paper deals with the approximation of systems of differential-algebraic equations based on a certain error functional naturally associated with the system. In seeking to minimize the error, by using standard descent schemes, the procedure can never get stuck in local minima but will always and steadily decrease the error until getting to the solution sought. Starting with an initial approx...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: GANIT: Journal of Bangladesh Mathematical Society
سال: 2016
ISSN: 2224-5111,1606-3694
DOI: 10.3329/ganit.v35i0.28565